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Abstract

A new active way to control laminar stability through feedback control strategy is presented in this paper. By
applying the expansion method, the small perturbation parameter, which is related to uniform boundary heat ¯ux,
is well separated out from the problem we studied. As a result, the heat ¯ux independent coe�cients, which re¯ect
the temperature dependent viscosity e�ects, can be obtained. It is shown that this feedback laminar ¯ow control

strategy can considerably dominate the development of ¯uctuations provided that the phase of heating or cooling
and the control position are properly chosen. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of stability and transition becomes

more and more important with the development of

gas-turbine-engine, low-Reynolds-number vehicles,

submarines, airplanes, space ships, etc. To delay/

advance transition, to suppress/enhance turbulence or

to prevent/provoke separation by various techniques,

which are called ¯ow control, always results in drag re-

duction, lift enhancement, mixing enhancement and

¯ow-induced noise suppression. Thus, Gad-el-Hak [1]

pointed out that ¯ow control is perhaps more hotly

pursued by scientists and engineers than any other

areas of ¯uid mechanics. Many ¯ow control strategies
such as heating or cooling, suction or injection, ¯exible
surface, compliant coating and large-eddy breaking

have been recently developed, see the review papers of
Morkovin and Reshotko [2] and Gad-el-Hak [1] for
details.
The pioneering work of Wazzan et al. [3] showed

that for a heated ¯at plate boundary layer in water,
the critical Reynolds number can be increased from
520 to nearly 16000 (based on displacement thickness).

Thus, there is a considerable potential for ¯ow control
with heating or cooling. But uniform heating or cool-
ing are always accompanied with relatively large

energy cost; therefore, optimal steady heating or cool-
ing is recently studied [4,5].
A more e�ective active control technique called

wave cancellation by localized periodical surface
heating strips was reported by Liepmann et al. [6,7].
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In their boundary layer experiments in water, two

heating elements are used: one for exciting T±S

wave and the other for cancelling T±S wave. They

found that the localized periodical surface heating

can either reduce or enhance the overall level of

¯ow ®eld ¯uctuations. In addition, by measuring the

upstream wall shear stress of the controlling surface,

they were able to synthesize a signal to drive the

cancellation disturbance at the controlling surface. A

feedback control technique is established. Further-

more, they demonstrated that the energy cost for

controlling ¯ow ®eld can be greatly reduced by

applying this technique. This concept of active con-

trol was demonstrated later by the numerical simu-

lation of Bayliss et al. [8] and the triple-deck

asymptotic analysis of Maestrello and Ting [9].

More recently, Ladd and Hendricks [10] and Ladd

[11] performed their experiment on a 9:1 ®neness

ratio ellipsoid in a water tunnel. Strip heaters were

again used to creat and actively attenuate T±S

wave. They applied digital ®ltering techniques to

synthesize the attenuation signal. The ®lter was able

to actively adapt the attenuation signal to change in

amplitude and frequency of the arti®cially intro-

duced instability wave with no loss of attenuation

downstream. Kral and Fasel [12] developed a nu-

merical model to control the spatial evolving T±S

wave and its secondary instability on a ¯at plate

boundary layer. Temperature perturbations are

introduced locally along ®nite heater strips to

directly attenuate the instability waves in the ¯ow.

Their results showed that the active control of the

early stages of fundamental breakdown process is

achieved with either two-dimensional or three-dimen-

sional control inputs. Asymptotic studies of Herwig

et al. [13,14] showed that the temperature disturb-

ance can be passively generated by the interaction

of T±S wave and mean temperature pro®le through

the energy equation. On the other hand, the tem-

perature disturbance can also in¯uence the critical

Reynolds number through the temperature depen-

dent ¯uid properties such as viscosity. But this

e�ect is only about 10% of that of the mean tem-

perature [14].

A new feedback ¯ow control technique is presented

in this paper. This control strategy is an e�ective com-

bination of the uniform heating or cooling of Wazzan

et al. [3] with the localized periodical surface heating

of Liepmann et al. [6,7]. The combination of these two

techniques is very important and necessary because the

control strategy of Liepmann et al. has a fatal short-

coming. In a natural transition procedure, the disturb-

ances are a group of waves and the largest amplitude

wave is the T±S wave. Although these primary waves

are behaving linearly, a nonlinear interaction can cause

a lower amplitude disturbance wave without the fre-

Nomenclature

a general quantity
â shape function of a
ci ampli®cation rate

cp speci®c heat at constant pressure
cr phase velocity
D derivative with respect to y

H half channel height
k thermal conductivity
Kd controller gain

Km nondimensional viscosity gradient, Eq. (6)
p pressure
Pr Prandtl number

m�Rc
�
p

k�

qw wall heat ¯ux

Re Reynolds number
r�U �RH

�

m�
R

t time
T temperature

T̂ temperature shape function
u streamwise velocity
UR reference velocity

v velocity normal to the wall
x, y Cartesian coordinates

Greek symbols
a wave length parameter
E perturbation parameter, Eq. (6)

m viscosity
c stream function
r density

y control phase angle

Superscripts

� dimensional quantity
± mean value
0 disturbance quantity
^ complex quantity

Subscripts
c critical or extreme point

i imaginary part
r real part
R reference state

w wall
0 zero order
m ®rst order viscosity e�ect
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quency of T±S wave to be only partially reduced and

ultimately lead to transition. The new control tech-

nique can avoid this problem and largely reduce all

wave disturbances through the uniform heating or

cooling. This problem will be discussed again in Sec-

tion 6.

Instead of measuring the upstream wall shear stress

of the controlling surface as a feedback control strat-

egy, a temperature sensor is used to measure the tem-

perature perturbation in this paper. The feedback

control is achieved by using the measured temperature

¯uctuation in the ¯ow ®eld as the input signal to con-

trol the downstream output periodical heat ¯ux. This

basically is to enhance the e�ects of the temperature

disturbance on ¯ow stability. By applying this mechan-

ism, laminar ¯ow stability is greatly enhanced or

reduced.

The analysing method is the asymptotic approach of

Herwig and SchaÈ fer [13]. As a advantage of this

approach, it provides results that hold for all Newto-

nian ¯uids and di�erent heat transfer rates.

The plane Poiseuille ¯ow with constant wall heat

¯ux is chosen as our analysis example, see Fig. 1.

Downstream of an adjustment zone, the ¯ow will

reach a fully developed state. Our feedback control

will refer to this part of ¯ow ®eld, see Herwig and

You [14] for details of the ¯ow. Without losing gener-

ality, we can only study the case with the temperature

dependent viscosity, which is a good approximation

for water. All other variable properties can be treated

likewise, see for example [15].

2. Basic equations

In the stability theory, all quantities are decomposed
into a mean value �a, and a superimposed disturbance ~a
� ~c, stream function; ~T, temperature ¯uctuation). The

form of disturbance part can be assumed as:

~a � â�y� exp
�
ia�xÿ ĉt�

�
� c:c: �1�

Then, from the Navier±Stokes equations (for tem-
perature dependent viscosity) and thermal energy

equation, the linear di�erential equations for ĉ�y� and
T̂�y� are deduced with D � @

@ y :�� �uÿ ĉ��D 2 ÿ a 2 � ÿD 2 �u
�
ĉ

� ÿ i

aRe

h
�m�D 2 ÿ a 2 � 2

i
ĉÿ i

aRe

��
2D �mD

� 2ia
@ �m
@x

�
�D 2 ÿ a 2 � �D 2 �m

ÿ
D 2 � a 2

��
ĉ

ÿ i

aRe

�
D3 �u� a 2D �u� 2D 2 �uD�D �uD 2

�
m̂, �2�

�
� �uÿ ĉ� � i

aRe Pr
�D 2 ÿ a 2 �

�
T̂

�
�
D �T� i

a
@ �T

@x
D

�
ĉ: �3�

Here, Re � r�U �RH
�

m�
R

and Pr � m�RC
�
p

k� are Reynolds num-

ber and Prandtl number, respectively. �u and �m are tem-
perature dependent mean ¯ow velocity and viscosity.

Fig. 1. Development of the temperature pro®le.
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The associated boundary conditions for velocity dis-
turbance are:

y �21: ĉ � @ ĉ
@y
� 0: �4�

The boundary condition for temperature disturbance T̂
forms the basis of our feedback control strategy and

will be de®ned in Section 5.
All the above equations are nondimensionalized

with respect to a reference state R which may be cho-
sen at any position x �R in the fully developed region.

The reference velocity U �R is the maximum mean ¯ow
velocity with constant viscosity. The reference tempera-
ture T �R is the bulk temperature at x �R, i.e. �T

�
B�x�R�:

The nondimensional temperature of the mean ¯ow is �T

� �T
�ÿT �R
DT �

R
, and that of the ¯uctuation is ~T � ~T

�

DT �
R
with

DT �R� �q�wH
�

k� , see Herwig and You [14] for details.

3. Property expansion method

The basic idea behind the property expansion
method is to combine the Taylor series expansion of
m� (or all properties in the general case) with respect to

temperature with a regular perturbation procedure of
the whole problem. From the Taylor series expansion
of m�, which in nondimensional form reads:

m � m�

m�R
� 1� EKmT�O�E 2 � �5�

with

Km �
�

dm�

dT �
T �

m�

�
R

, E � �q�wH
�

k�T �R
: �6�

a small quantity E can be extracted which may serve as

a perturbation parameter of the whole problem. Trun-
cating the Taylor series after the linear term, results in
a linear perturbation theory with respect to E: Exten-
sion to higher orders �E 2, E3, � � �� is straightforward, see
You and Herwig [16] for details, but it is not in the
scope of this study. The parameter Km is a property of
the ¯uid (for example: water at T �R � 293 K,

Km � ÿ7:134).
According to Eq. (5), we expand:�

�u, �T, �m
	T�

�
�u0, �T0, 1

	T�EKm
�

�um, �Tm, �T0

	T�O�E 2 �, �7�

n
ĉ, T̂, m̂, ĉ

oT

�
n
ĉ0, T̂0, 0, ĉ0

oT

�EKm

n
ĉm, T̂m, T̂0, ĉm

oT

�O�E 2 �: �8�

In the above expansions, the quantities with index 0

describe the constant property behavior and those with
index m re¯ect the in¯uence of viscosity deviations due

to its temperature dependence.
The fully developed mean ¯ow ®eld solution, i.e. �u0,

�T0, �um and �Tm in Eq. (7) can be given analytically as:

�u0 �
ÿ
1ÿ y 2

�
,

�T0 � 3

2

�
ÿ 1

12
y4 � 1

2
y 2 ÿ 13

140

�
� 3x

2Re Pr
,

�um � ÿ 1

24
y6 � 3

8
y4 ÿ 111

280
y 2 � 53

840
,

�Tm � 1

2

�
ÿ 1

448
y8 � 3

80
y6 ÿ 111

1120
y4 � 53

560
y 2

� 16,917

2,587,200

�
: �9�

The reference point R is taken at x � 0 in our calcu-
lation.

4. Linear stability equations

If we now insert Eqs. (7) and (8) into Eqs. (2) and

(3), we end up with the following zeroth and ®rst
order equations with respect to E: But, before we do
this, we split the ®rst order function ĉm and ĉm, which

re¯ect the change of velocity disturbance and wave
phase velocity, respectively due to temperature depen-
dent viscosity, into two parts, i.e. we write:

ĉm�T� � ĉm1
� �T� � ĉm2

ÿ
T̂
�
, �10�

ĉm�T� � ĉm1� �T� � ĉm2
ÿ
T̂
�
: �11�

Thus, the in¯uence of the temperature disturbance T̂ is

well separated from that of the mean temperature �T:
This separation is possible due to the linearity of Eq.
(2). Then we have:

zeroth order

Lĉ0 � 0, �12�

LTT̂0 �
�
D �T0 � 3i

2aRe Pr
D

�
ĉ0, �13�

®rst order
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Lĉm1 � ÿ
�ÿ

�um ÿ ĉm1
��D 2 ÿ a 2 �ĉ0 ÿD 2 �um

ÿ 3

Re 2 Pr
�D 2 ÿ a 2 �

�
ĉ0 ÿ

i

aRe

h
�T0
�D 2

ÿ a 2 � 2�2D �T0
�D 2 ÿ a 2 �D�D 2 �T0

ÿ
D 2

� a 2
�i
ĉ0, �14�

Lĉm2 � ĉm2�D 2 ÿ a 2 �ĉ0 ÿ
i

aRe

�
D3 �u0 � 2D 2 �u0D

�D �u0
ÿ
D 2 � a 2

��
T̂0: �15�

Here

L� � �u0 ÿ ĉ0 ��D 2 ÿ a 2 � ÿD 2 �u0 � i

aRe
�D 2 ÿ a 2 � 2, �16�

LT � � �u0 ÿ ĉ0 � � i

aRe Pr
�D 2 ÿ a 2 �: �17�

The associated boundary conditions are:

y �21:

ĉ0 � Dĉ0 � ĉm1 � Dĉm1 � ĉm2 � Dĉm2 � 0:
�18�

The boundary condition for the temperature disturb-

ance T̂0 will be de®ned in next section.
Eq. (12) is the well known Orr±Sommerfeld

equation in standard form, Eqs. (14) and (15) are its
®rst order extension to account for temperature depen-

dent viscosity by the perturbation ansatz (7), (8), (10)
and (11).

5. The feedback control strategy

The remaining boundary condition for the tempera-
ture disturbance forms the basis of the present feed-
back control. Before we look for the suitable

temperature disturbance boundary condition, let's ®rst
consider the important role of the temperature ¯uctu-
ation in our feedback control strategy. The study of
Herwig and You [14] showed that the temperature dis-

turbance can be passively generated by the interaction
of T±S wave and mean temperature pro®le through
the energy equation. They discussed in detail how a

temperature disturbance is evolved. They found that
the ®nal shape of the temperature disturbance can be
reached in a short time (about 1.6 wave period for the

case of Re � 5800, Pr � 7 and a � 1:02). We assume
that the ®nal shape of the temperature perturbation is
reached in this study before we begin to perform our

feedback control. On the other hand, they also showed
that the temperature disturbance can a�ect the critical

Reynolds number through the temperature dependent
¯uid properties such as viscosity, and they further
found that this e�ect is only about 10% of that of the

mean temperature. The basic idea behind this feedback
control is to enhance the temperature disturbance in-
¯uence on ¯ow stability by the periodical heating.

Then our goal to control transition by few energy
input can be realized.
We suppose to use a number of temperature sensors

to measure the ¯uid temperature at some ®xed plane
�yc � constant). Then, from the di�erence between the
measured temperatures and the known mean tem-
peratures, the amplitude of temperature disturbance

T̂0�yc� can be determined (for temporal modes, tem-
perature sensors are placed along a time period and
for spatial modes, temperature sensors are placed

along a space period. Experiments are always corre-
sponding to spatial modes). We adjust the input heat
¯ux disturbance (input heat ¯ux minus the uniform

heat ¯ux) at ¯ow ®eld boundaries (two walls for our
example) to be a function of the temperature ¯uctu-
ation T̂0�yc� as f �T̂0�yc��: f is called controller function.

Now our feedback control loop is established.
It will be convenient if we can use the temperature

disturbance on the wall as our feedback control input
signal. Unfortunately, the temperature disturbance on

the control wall is too small (near zero) to be used as
the upstream control input signal. The control position
yc is chosen here. It corresponds to the point where

the maximum value of the module of the temperature
disturbance T̂0�y� is realized before performing the
feedback control. The large value of T̂0�yc� can be

easily measured, and the feedback control is e�ciently
achieved.
Generally, the controller function is a nonlinear

function. For a simpli®ed case, we choose a linear

function as the controller function in this paper.
Other control functions can be treated in the same
way. Then the boundary condition for temperature

disturbance can be one of the following three cases:

DT̂0�21� � KdeiyT̂0�yc �, �19�

DT̂0�1� � KdeiyT̂0�yc �, DT̂0� ÿ 1� � 0, �20�

DT̂0�21� �2KdeiyT̂0�yc �: �21�

Here Kd is controller gain, y is control phase angle
which is the di�erence between the phase of con-

trolled input heat ¯ux disturbance at upper wall
�y � 1� and that of the temperature disturbance
T̂0�yc�:
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The boundary condition (19) corresponds to gener-
ate a symmetric temperature disturbance which has no

contribution to the ®rst order coe�cient ĉm2�T̂0�: Thus,
the feedback control e�ects are minimized. On the
other side, the boundary condition (21) enhances the

nonsymmetrical temperature disturbance which has the
largest contribution to the ®rst order coe�cient
ĉm2�T̂0�: Then the maximum feedback control e�ects

are realized. The boundary condition (20) means only
the periodical heat ¯ux of one wall (upper) is con-
trolled. In this case, its e�ects on ¯ow control are in

the range of the above two extreme cases. Thus, the
boundary condition (21) is adopted in all calculations.

6. Numerical results and discussion

The numerical method, which is used to solve Eqs.

(12)±(15) and their boundary conditions (18) and (21),

is Chebyshev tau method. All ĉj and T̂j are expanded

in Chebyshev polynomials. For our case, 36 Chebyshev
polynomials are appropriate. Our normalized con-

dition is max�Dĉ0� � 1: All results are corresponding
to water with T �R � 293, Km � ÿ7:134 and Pr � 7:
Fig. 2 shows the dependence of critical wave number

ac, minimum unstable Reynolds number Rec, optimal

control position yc and control phase angle yc on the
controller gain Kd with E � 0:01 (heating water). yc

and yc are the control values which correspond to the
maximum feedback control. It is shown that as Kd

increases, ac decreases and Rec and yc increases, but yc

is nearly constant.

It is well known that for the plane Poiseuille ¯ow

without heat transfer e�ects, the minimum unstable
Reynolds number Rec is about 5772 which is corre-

sponding to the wave number ac � 1:02: If constant
heat ¯ux is input on two walls, the uniform heating

will increase the minimum unstable Reynolds number

Fig. 2. The relation of critical wave number ac, minimum unstable Reynolds number Rec, optimal control position yc and control

phase angle yc with the controller gain Kd: E � 0:01 and Pr � 7: (a) ac depends on Kd, (b) Rec depends on Kd, (c) yc depends on

Kd, (d) yc depends on Kd:
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Rec for water. For example, the minimum unstable

Reynolds number Rec will increase to about 6593 as
the heat transfer rate is E � 0:01: This case corresponds
to our feedback control with zero controller gain.

The input heat ¯ux can be separated as qw �
�qw � Eq̂w: For spatial modes, �qw is the average of qw

on space and for temporal modes, �qw is the average of
qw on time like it in this paper. The �qw is the uniform
heat ¯ux on the wall and is related to the small expan-

sion parameter E: For example, the minimum unstable
Reynolds number is increased by about 821 when E �
� �q�wH ��=�k�RT �R� � 0:01: For a channel width of 2H � �
0:1 m, T �R � 293 K and k�R � 0:6 W/(m K) (water),
this corresponds to a heat ¯ux �q�w � 35:16 W/m2.

According to Eq. (9) for �T0, this heat ¯ux would cause
a zeroth order temperature di�erence �T �0w ÿ �T �0c � 1:83
K between the wall and the centerline. This may

demonstrate that even for a small energy cost, there is
an appreciable e�ect on the stability behavior of this
¯ow. A further improvement would be using optimal

steady heating or cooling instead of uniform heating
or cooling. This may lead to further reduction of

energy cost. It will be the next step of our study.
The q̂w � kRKdeiyT̂0�yc� is related to our feedback

control strategy. Fig. 2(b) shows the dependence of

Rec on Kd: For the case Kd � 2000, the Rec is about
9592. How large is the input amplitude of heat ¯ux
disturbance at this time? We recall the above example

again. For ac � 0:963, Eû0 � 1% and yc � 0:86, the
EjT̂0�yc�j � 0:0322 and the amplitude of input period-

ical heat ¯ux Ejq̂�wj � Ek�R
DT �R
H � KdjT̂0�yc�j � 2264 W/m2.

The net input of heat ¯ux disturbance Eq̂�w over a
period of time for our temporal modes is very small

(the average of q̂�w is zero in theory) due to some parts
of ¯ow ®eld are heated and the other parts are cooled.
For this case, the feedback control can keep laminar

¯ow stable until Rec � 9592: This shows how powerful
this feedback control is!

The Liepmann feedback control works well when
there appears only one dominated frequency disturb-
ance (T±S wave) in their experiment [6,7] (two heating

elements were used. one was for exciting T±S wave
and the other was for cancelling the induced T±S

wave). But this case is quite di�erent from a natural
transition where besides the T±S wave, there are
always waves with a wide range of other frequency

¯uctuations. Some of them perhaps have a less small
amplitude comparing to that of T±S wave. Although
these primary waves are behaving linearly, a nonlinear

interaction can cause a lower amplitude disturbance
wave without the frequency of T±S wave to be only

partially reduced. This means the remaining wave dis-
turbances in the natural transition are generally larger
than those in the deliberately excited T±S wave case

after the wave cancellation is performed.
Why does this phenomenon appear? If we recall the

localized periodical surface heating control in water,

the ¯ow ®eld with heating leads to a fuller mean vel-
ocity pro®le. This is favorable for the disturbances
stabilized. On the other side, the remaining part of

¯ow ®eld with cooling causes a thin mean velocity pro-
®le, and sometimes it even leads to a mean velocity
pro®le with a in¯exion. This may destabilize the dis-

turbances with di�erent frequency during the cancella-
tion of T±S wave. The above conclusion is proved

again if we compare the Fig. 2(d) with Fig. 3(b) of
Liepmann and Nosenchuck [7]. The Fig. 2(d) and
Fig. 3(b) show the cancellation results of cancelling a

deliberately excited T±S wave and a natural T±S wave,
respectively. The amplitude of remaining disturbances
in Fig. 3(b) are obviously larger than those in Fig. 2(d)

and the larger remaining disturbances may lead to a
laminar transition soon.

The new control strategy is an e�ective combination
of the uniform heating or cooling with the localized
periodical surface heating. This combination is both

important and necessary. As we discussed above, the
shortcoming of the localized periodical surface heating

is that it may cause the possibility of transition for
di�erent frequency disturbances. The present control
strategy avoids this shortcoming by adding the uni-

form heating or cooling during the cancellation of T±S
wave. Thus, the remaining wave disturbances will be
reduced again and the transition can be further

delayed.
Even if the Liepmann control strategy can e�ectively

cancel the T±S wave, it also leads to the risk of
instability for other frequency ¯uctuations. As for our
feedback control, this risk of instability can be avoided

by adjusting the suitable value of controller gain Kd:
The e�ect of uniform heating is always favorable for
stabilizing all ¯uctuations in the ¯ow ®eld for water. If

this e�ect can surpass the risk of transition caused by
the periodical heating (too large Kd), our feedback

control will be successfully performed without raising
any danger of instability. For the above example, �q�w �
35:16 W/m2 is corresponding to E � 0:01: Eq̂�w is ap-

proximately proportional to controller gain Kd and for
Kd � 2000, Eq̂�w � 2264 W/m2. Then for the safety of
control, we can choose Ejq̂�wj � �q�w and it results in

Kd � 31: Then the input heat ¯uxes on the two walls
are all heating the ¯ow. Thus, the risk of instability for

other frequency disturbances are well avoided. This is
a very conservative control strategy. In fact, the con-
troller gain Kd can be much larger than 31. It depends

on the conditions of the ¯ow which is being controlled.
Fig. 3 shows the dependence of critical wave

number ac, minimum unstable Reynolds number
Rec, control position yc and control phase angle yc

on the controller gain Kd with E � ÿ0:01 (cooling

water). It is shown that as Kd increases, ac increases
and Rec and yc decreases, and yc like that in the
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above heating case is a near constant. It is con-
cluded that this feedback control strategy is also

powerful to make laminar ¯ow more unstable and
speed up its transition procedure. From Eq. (13), it
is found that for the same controller gain Kd, the

e�ect from the controlled temperature disturbance
T̂0 will increase as the decrease of aRe Pr: Large
temperature disturbance e�ect means big value of

om2i which is directly related to disturbance growth
rate, see the following equation (22). Thus, this
feedback control is more powerful for unstabilizing

¯ow than stabilizing it. This large temperature ¯uc-
tuation e�ect is also shown in Figs. 4(b), 5(a) and
6(a) where the large om2i appears.
From Eq. (8), ô � aĉ can be expanded as:

oi � o0i � EKm�om1i � om2i �: �22�

Fig. 4 shows how the om1i and om2i depends on a and

Re when Kd � 0: Due to the advantage of the expan-

sion method, the small heat transfer parameter E is

well separated out of our problem (for other problems

are the same). This means the om1i and om2i of Figs. 4±

6 are independent of E: Fig. 4 also shows that the om2i

is about 10% of the om1i for Kd � 0: Our feedback

control is achieved by improving the e�ects of T̂0

which causes the dependence of om2i on Kd: The om1i

from the mean temperature e�ects are independent of

Kd:
Fig. 5 shows om2i and yc depend on a and Re for

Kd � 1000: It is found that the control position yc is a

near constant for all cases we studied. Thus, the results

of Figs. 5 and 6 are computed by choosing the optimal

yc � 0:87: It shows that the om2i increases with the

decrease a and Re. This is explained as that of

Fig. 4(b). yc depends linearly on a and Re. It becomes

large with decreasing a and increasing Re. As the con-

troller gain Kd is increased, the temperature ¯uctuation

Fig. 3. The relation of critical wave number ac, minimum unstable Reynolds number Rec, optimal control position yc and control

phase angle yc with controller gain Kd: E � ÿ0:01 and Pr � 7: (a) ac depends on Kd, (b) Rec depends on Kd, (c) yc depends on Kd,

(d) yc depends on Kd:
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T̂0 is greatly enhanced and then it causes the increase
of om2i: Now our goal to control transition is achieved.

Fig. 6 shows om2i and yc depend on a and Re for
Kd � 2000: The results are similar to those of Kd �
1000: At this time, the om2i is further increased and the

feedback control e�ect is improved.

7. Conclusions

It is shown that the new feedback control strategy is
a very powerful method for laminar ¯ow control. It

has an advantage over the method of Liepmann. It can

control not only the T±S wave disturbance but also all

other ¯uctuations. Thus, it avoids the shortcoming of

Liepmann control and the transition can be further

delayed. On the other side, the small perturbation par-

ameter E, which is related to the uniform boundary

heat ¯ux, is well separated out from our problem by

applying the expansion method. As a result, the heat

¯ux independent coe�cients om1i and om2i, which

re¯ect the temperature dependent viscosity e�ect, can

be obtained.

In this study, the plane Poiseuille water ¯ow is cho-

sen as example. It is undoubted that this feedback con-

Fig. 4. The relation of coe�cients om1i and om2i with Reynolds number Re and wave number a: Kd � 0 and Pr � 7: (a) om1i

depends on Re and a, (b) om2i depends on Re and a:

Fig. 5. The relation of coe�cient om2i and control phase angle yc with Reynolds number Re and wave number a: Kd � 1000,

yc � 0:87 and Pr � 7: (a) om2i depends on Re and a, (b) yc depends on Re and a:

X.Y. You, X. Xiao / Int. J. Heat Mass Transfer 43 (2000) 3529±3538 3537



trol strategy can also be applied to control other ¯ow

®elds and ¯uids.
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